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space dimensions on structured and unstructured meshes. The work is a multi-dimen-
sional extension of the one-dimensional FORCE flux and is closely related to the work of
Nessyahu-Tadmor and Arminjon. The resulting basic flux is first-order accurate and mono-
tone; it is then extended to arbitrary order of accuracy in space and time on unstructured
meshes in the framework of finite volume and discontinuous Galerkin methods. The per-
Conservative hyperbolic systems formance of the schemes is asse§sed ona suite of test problems for the multi-dimensional
Riemann problem Euler and Magnetohydrodynamics equations on unstructured meshes.
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1. Introduction

The pioneering work of Lax and Wendroff [30], and more recently that of Hou and LeFloch [25], have established, theo-
retically, that numerical methods for systems of non-linear hyperbolic conservation laws must be conservative. Then, a key
task is the prescription of monotone intercell numerical fluxes. These will then constitute the building block for a wide range
of numerical methods constructed in the frameworks of finite volume and discontinuous Galerkin finite element methods, in
either fully discrete or semi-discrete form, on structured or unstructured meshes. The construction of numerical fluxes has
been a central research issue for over five decades, of which two very prominent and representative examples are the Lax-
Friedrichs flux [29] and the Godunov flux [19]. These two methods introduced key ideas that have remained the pillars of
current research. They are representative of the two distinct approaches for prescribing numerical fluxes, respectively
termed centred (or symmetric) and upwind (or Riemann-problem based, or characteristic-based). Upwind schemes, explicitly
use wave propagation information contained in the differential equations for the construction of the numerical flux, which is
usually accomplished by solving a local one-dimensional Riemann problem, in the direction normal to a cell interface. The
(classical) Riemann problem is the Cauchy problem for the relevant system of conservation laws along with piece-wise con-
stant initial conditions, usually the cell averages on each side of the interface. Centred schemes, on the other hand, do not
explicitly use wave propagation information contained in the corresponding Riemann problem. That is, centred schemes do
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not solve the Riemann problem in the conventional manner. However these schemes are not independent of the Riemann
problem, as they use both the differential equations and the initial conditions of the Riemann problem.

This paper is about the construction of numerical fluxes of the centred type, for general hyperbolic systems in conserva-
tion-law form, in multiple space dimensions. The schemes are derived for Cartesian and non-Cartesian structured elements
and for unstructured triangular and tetrahedral elements. A key ingredient of the present centred schemes is an averaging
operator that results from the integral form of the conservation laws applied to appropriately chosen control volumes. Such
operator is valid for both classical and weak solutions of conservations laws and is applicable to the one and the multi-
dimensional cases. The present work builds upon two lines of current developments regarding centred methods. The first
relates to the centred schemes reported by Nessyahu and Tadmor [35]. For extensions to unstructured meshes see the work
of Arminjon and collaborators, e.g. [2], and for high order extensions see the work presented in [32,5,33]. The second line
results from the FORCE scheme proposed by Toro and Billett [43]. As a matter of fact, the present work is a multi-dimensional
extension of the FORCE scheme. Both approaches have the common feature of applying an averaging operator on staggered
control volumes. In the Nessyahu-Tadmor approach the schemes consist of a two-step procedure on staggered grids and do
not have a conservative form; in addition, the scheme is subject to a CFL restriction of 1/2. The FORCE scheme is a one-step
procedure on a non-staggered grid and has a conservative form with a corresponding numerical flux, called the FORCE flux; it
is subject to a CFL restriction of unity. The Nessyahu-Tadmor scheme is second-order accurate for smooth solutions and
essentially non-oscillatory for discontinuous solutions, while the FORCE scheme is first-order accurate and monotone. The
Nessyahu-Tadmor schemes have also been applied to multi-dimensional problems on regular Cartesian grids by Jiang
and Tadmor [28], and to unstructured triangular and tetrahedral meshes by Arminjon and collaborators, see for example
[2]. Available theoretical results for the Nessyahu-Tadmor schemes include proofs of convergence; Haasdonk et al. [21]
proved convergence of the first-order version of the Nessyahu-Tadmor scheme for non-linear scalar conservation laws on
unstructured triangular meshes. For the FORCE scheme convergence was proved by Chen and Toro [6] for the case of two
non-linear systems of conservation laws in one space dimension, namely the isentropic equation of gas dynamics and the
non-linear shallow water equations with a source term due to bed elevation.

In this paper we extend the FORCE approach to non-linear multi-dimensional systems of hyperbolic equations in conser-
vation-law form. The schemes are one-step schemes in conservative form on unstaggered general meshes, where numerical
fluxes emerge in a very natural way. Centred fluxes may be seen as being an appropriate solution of the Riemann problem
without resolving the wave structure. For the purpose of analysis, FORCE schemes are also constructed on regular Cartesian
meshes in two and three space dimensions. Various stencil configurations are explored and detailed analysis of monotonic-
ity, linear stability and numerical viscosity is carried out. The most successful stencil configurations are extended to trian-
gular meshes in two space dimensions and tetrahedral elements in three space dimensions.

The rest of the paper is structured as follows. Section 2 sets the background and reviews the FORCE and Nessyahu-Tad-
mor approaches, discussing common features and differences. In Section 3 we extend the FORCE approach and construct
numerical fluxes for two and three dimensional general meshes; we also specialize the FORCE schemes to regular Cartesian
meshes in two and three space dimensions for the purpose of analysis of the schemes. In Section 4 we extend the first-order
monotone multidimensional FORCE schemes to arbitrary order of accuracy in both space and time following the ADER
approach on unstructured meshes in two and three space dimensions (see, for instance [12,14,11]). In the same section
we also compute convergence rates for smooth solutions. In Section 5 we assess the performance of the numerical schemes
for shocked flows via a suite of test problems for the Euler and relativistic MHD equations. Conclusions are drawn in Section
6. In Appendix A and Appendix B we analyse the monotonicity, linear stability and numerical viscosity of the multidimen-
sional FORCE schemes on Cartesian meshes.

2. Background

Here we review the one-dimensional FORCE flux in the framework of finite volume methods and discuss its relation with
the Nessyahu-Tadmor approach.

2.1. The finite volume framework

We consider a one-dimensional system of m non-linear hyperbolic equations in conservation-law form
Q+ 9, FQ)=0, xeR, t>0, (1)

where Q(x, t) is the vector of conserved variables and F(Q) is the vector of fluxes. We consider the Cauchy problem for (1)
with initial condition of the form

Qx,t") = Q" (x). (2)

Given the control volume V = {x,-f%,xﬂ%] x [t", t"*1] of dimensions At = t"*1 — " and Ax = Xi,j — X;_3, One can integrate system

(1) in space and time exactly, and divide by the cell width Ax to obtain the averaging operator
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This operator defines an average of the solution of the Cauchy problem (1) at time t = t"*!, for x € Xi ;X

Hl] requiring the
spatial integration of the initial condition and the evaluation of the flux time integrals at x = Xiy and x = x; e Eq. (3) can also
be written as

At
Q" =Q 3[Ry —F @

with the following definitions:

Nias!

Q_E HZQ( P F"*%:é./tn FQ(xpt))ar (5)

Recall that the exact relation (4) gives rise to finite volume methods to solve (1) approximately in which Q} and FH% are
interpreted as approximations to the respective integrals (5).

2.2. (lassical finite volume schemes

The Godunov approach [19] exploits the piece-wise constant distribution of the data Q] and, locally, defines (classical)
Riemann problems

PDEs : 9,Q + &,F(Q) =0,

rooif 0 6
coano-{F 1 ©
i+1

with similarity solutions denoted by Q; ax/t), where x and t are understood as local coordinates. Then the Godunov intercell
numerical flux is

Fi;y = F(Q;,4(0)). (7)

The solution Q; il 1(x/t) could be exact or approximate. In addition one could define approximations F; P directly, without
requiring a state QH] (x/t). For background on Godunov methods, see for example, [17,31,42]. Methods that explicitly exploit
wave propagation information emanating from the solution of the Riemann problem are generally called upwind methods.
The simplest upwind method is Rusanov’s method [37], which only extracts an estimate for an upper bound for the maxi-
mum propagation speed in the local Riemann problem. One can define this scheme as a “one-wave solver”. A two-wave sol-
ver is the HLL scheme [22], which requires estimates for lower and upper bounds for the speeds emanating from the local
Riemann problem. We shall speak of a complete Riemann solver for the one whose wave model contains all m characteristic
fields present in the exact solution. Otherwise, the Riemann solver will be termed incomplete.

It is possible to construct numerical fluxes F; 1 very approximately, without explicitly solving the Riemann problem (6),
provided that what actually defines the Riemann problem is preserved, that is, the differential equations and the initial con-
dition. Methods of this type include the so-called centred methods, or symmetric methods. Classical centred methods in-
clude the Lax-Wendroff method [30], the Lax-Friedrichs method [29] and the Godunov centred method [18], not to be
mistaken with the Godunov upwind method.

The popular two-step version of the Lax-Wendroff method uses the averaging operator (3) in the control volume
[xi,Xi:1] x [t",t" +1At] to obtain an integral average of the solution of the Riemann problem (6) at time t" +1At, for
X € [X;,Xi41] as follows:

1
Qi =5(Q +Qiy) -

Then, the numerical flux is
Flf = FQL)). (9)

The Godunov centred method is analogous to the Lax-Wendroff method, it first computes an averaged state at the full time
level

2 RQL) —FQ)) ®)

N —

Q) =5 Q + Q) - 55 [FQL) - FQ7), (10)
and then computes the corresponding numerical flux as
FHI_F( ,Gf%) (11)

Compare the Godunov upwind flux (7) with the centred fluxes (9) and (11). Also, the classical Lax-Friedrichs method may be
constructed with reference to the (staggered) Riemann problem
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PDEs : 9,Q + 9,F(Q) = 0,
Q, ifx<0, (12)
Qn if x; > 0.

i+1

IC: Q(x,0) = {

One can define directly a cell average Q"' at the new time level for cell i as an average of the solution Q,-(x, t) of this Rie-
mann problem at the half-time level, namely

] Xi+l ~ ]
n+1 _ 1 20. n_ -
; _Ax/x,] Ql(x,t +2At>dx. (13)
=3
Now, instead of solving the Riemann problem (12) to calculate (13) explicitly one applies the averaging operator to obtain
n+1 1 n n 1 At n n
Q" = E(Q—i +Qiyq) ) E[F(Qm) - F(Q})], (14)
which if written in conservative form (4) has numerical flux
1 1 Ax
Fy =5 [FQ)) +F@Q}1)] —5 4, (@11 — Q). (15)

2.3. The FORCE scheme

The FORCE flux, first communicated in [41], was derived as a deterministic analogue of the staggered-grid version of
Glimm’s method [16], or Random Choice Method (RCM). This version of RCM advances the solution in two steps by randomly
sampling exact solutions of Riemann problems using a staggered grid. The FORCE approach replaces randomly sampled exact
solutions of classical (piece-wise constant data) Riemann problems in a two-stage procedure by an averaging operator at
each stage. The end result is a deterministic one-step method, in conservative form, on a non-staggered grid, with a numer-
ical flux, the FORCE flux. We note that there is a close relationship between the FORCE scheme and the scheme proposed
earlier by Nessyahu and Tadmor [35], as we shall explain later.

Given the two local Riemann problem solutions Qi,% (x/t) and QH% (x/t), at the (local) time t = 1 At we apply the averaging
operator to obtain, respectively

11 1At
i1 =5(Q + Q) — 5 1 [FQ)) ~FQi,)),
nl 1 1At
Q) =5(Q +QlLy) -5 4 [FQL) ~FQD)
The complete solution is restored back to the cell I; = [x,;%,xi%] in the second step by averaging the solution of the Riemann
problem

PDEs : 9,Q + 0,F(Q) =0,

ji—1
1=

(16)

1
n+l

L1 ifx <0, 17)
IC: Q(x,0) = ni
QH%2 if x;>0
at time t = At, obtaining
1 1 1 1At 1 1
+1 n+ n+- n+- n+-
Q-5+ Q) —5 i [F(QI) -] (18)

The solution Q}”‘ at the complete time step t = At (globally, at time t = t" + At = t"*!) may now be expressed in terms of the
conservative one-step formula (4), yielding, as a by product, the intercell numerical flux
1 1 1 1 Ax
=5 {F(Q?j;) 5 [FQ) +FQiL)] —5 57 (@ Q?)} (19)

called the FORCE flux. It turns out that this flux is in fact the mean between the two-step version of the Lax-Wendroff flux (9)
and the Lax-Friedrichs flux (15), that is
1
FO LW LF
Fi% ) (Fi% + Fi+%)‘ (20)
We also recall some basic properties of FORCE and related schemes in terms of the model hyperbolic equation
deq(x,t) + 10xq(x,t) =0, /: constant. (21)

Table 1 summarizes the results, where ¢ = 4 is the Courant number. Note that the first-order Godunov centred scheme is
not monotone in its full range of linear stability. The FORCE scheme, as the classical Lax-Friedrichs scheme, is monotone in
its full range of linear stability.
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Table 1
Accuracy, linear stability and monotonicity of selected schemes.

Accuracy Linear stability Monotonicity
Godunov upwind First-order 0<cl<1 Yes
Lax-Wendroff Second-order 0<cl<1 No
Godunov centred First-order 0< el <iv2 Not for 0 < [c] <
Lax-Friedrichs First-order 0<cl<1 Yes
FORCE First-order 0< <1 Yes

For more properties of the FORCE flux see [43]. See also [6], where the scheme is shown to be convergent for the non-
linear shallow water equations and for isentropic gas dynamics.

Modern numerical methods for hyperbolic conservation laws are, first of all, conservative. This requires a numerical flux.
If first-order of accuracy is regarded as sufficient, then the numerical flux must be monotone (for the scalar case). If high
accuracy, ideally in both space and time, is desirable, for smooth solutions, then the schemes must also be free from spurious
oscillations in the vicinity of large gradients, shock waves in particular. But according to Godunov’s theorem [19], these two
requirements are contradictory, for linear schemes. The only way out is to construct non-linear schemes. These are based on
two basic building blocks: non-linear spatial reconstruction operators and a basic first-order monotone flux. From this point
of view, the only useful schemes from Table 1 are the Godunov upwind, Lax-Friedrichs and the FORCE schemes. However, it
is known that it is not possible to construct second-order TVD schemes based on the Lax-Friedrichs scheme, as reported in
[43], leaving the Godunov upwind scheme and the FORCE scheme. The former resolves more fully the Riemann problem and
the latter approximates the solution of the Riemann problem by a combination of averages.

2.4. The Nessyahu-Tadmor scheme

The Nessyahu and Tadmor approach [35] in one space dimension considers a sequence of generalized (non classical) Rie-
mann problems, whose initial conditions are given by piece-wise non-linear reconstructions of first degree polynomials.
Then the averaging operator is applied in a two-step, staggered-grid fashion. In the first step one considers the Riemann
problem

PDEs : 0,Q + &:F(Q) =0,
Pi(x) = Q] + (x — x;)Ai if x <X.4, (22)

P (x) = Q?+1 + (X = Xi11)Aiq if x> Xiils

IC: Q(x,0) = {

where A; is a vector of suitable slopes, chosen so as to control spurious oscillations. Applying the averaging operator (3) in
the control volume [x;,x;.1] x [t",t" + Jt] one obtains an integral average of the solution at time t" + dt, for x € [x;,Xi.1], as
follows:

N 1 1 1 "ot 1 th+ot

Qi =5 (@ + QL) gA(A— Au) — [ [ FQun e -5 [ R 0)de. (23)
2 2 8 ot M ot o

The fluxes are computed by a mid-point rule approximation to the time integrals. For example, for the flux at x; the Ness-

yahu-Tadmor approach proceeds as follows. By means of the Cauchy-Kowalewski method one obtains, at x;, a state Q; given

as

= n 1 n n 1 n

Qi =Q; +§5t0fQ,- =Q; - iétaxF(Qi ). (24)
Then the required flux approximation is

F,=F(Q). (25)

An analogous procedure is applied at x;.4. For the second step of the method one has the set of cell averages {QH%} at the
interfaces. Again, a reconstruction operator is applied and a generalized Riemann problem

PDEs: 0,Q + 0xF(Q) =0,
i; (X) = Qi—% + <X —XF%>B» 1 ifx< Xi, (26)

1=

1
=

IC: Q(x,0) =< _ ~ R
Pii()=Q;y+ (X - Xn%) Apy ifx>x

is considered. Applying the averaging operator (3) in the control volume [x,-,%,xw%] x [t" + ot t" + 5t+§t] one obtains an
integral average of the solution of the Riemann problem (26) at time t" + §t + ot, for x € [xi,%,x,-%}, completing the solution
procedure after a time At = &t + ot, restoring solution values back to the centres of the volumes.
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Remarks on the FORCE and Nessyahu-Tadmor schemes: First we note that none of the methods discussed so far can escape
the Riemann problem. Upwind methods resolve, exactly or approximately, the details of the wave structure emanating from
the interface. Instead, the so-called centred methods, using the integral form of the conservation laws, average the solution
of the Riemann problem in appropriately chosen control volumes. The Nessyahu-Tadmor scheme averages solutions of gen-
eralized Riemann problems, resulting in a second-order accurate scheme, for smooth solutions, and essentially non-oscilla-
tory at shocks, which requires non-linear reconstructions twice, one in each sub-step. Moreover, each sub-step is subject to
the CFL restriction Cy < 1/2 and the time steps Jt and St are not necessarily related. We note also that the stencil of the
complete Nessyahu-Tadmor scheme has 6 points, in contrast to most one-step TVD methods.

The relationship between the FORCE and the Nessyahu-Tadmor schemes can be summarized as follows: the former can
be obtained from the latter if the following conditions were observed: (i) no reconstruction in the Nessyahu-Tadmor
scheme, (ii) 6t = ot = 3 At imposed, (iii) algebraic manipulations performed so as to end up with a one-step conservative
scheme, with a corresponding numerical flux.

The next section addresses the first main point of this paper, which is the construction of a multi-dimensional version of
the FORCE scheme that is applicable to general meshes in two and three space dimensions.

3. FORCE schemes in multiple space dimensions

Consider a general system of non-linear conservation laws in o space dimensions
9:Q +div(E(Q)) =0, (27)

where F = (f(Q),2(Q), h(Q)) is the flux tensor.
We first construct the schemes in the setting of general meshes and later, for the purpose of analysis of the schemes, we
specialize the approach to Cartesian meshes in two and three space dimensions.

3.1. FORCE schemes on general meshes

We assume a conforming tessellation .7, of the computational domain Q c R* by elements T; such that

To=Tu (28)

Each element T; has n; plane faces 9T, of area S;, with associated outward pointing face-normal vectors i;. The total volume
|Ti| of element T; is sub-divided into sub-volumes V; generated by connecting the barycentre of element T; with the vertices
of face j. The corresponding adjacent sub-volume in the neighboring element that shares face 9T, with element T; is denoted
as Vj*. Fig. 1 illustrates the above definitions and notation for the two-dimensional case. Note that the intersection of V;” and
V" gives the edge j of the element T;. With reference to Fig. 1 we distinguish two kinds of elements: primary elements T;, at
which the solution is sought at each time step, and secondary elements formed by V; |J V!, for j = 1,2,3. Obviously, the sub-

volumes |V} | add up to the total volume of T;, that is
ny
ITil = IV; . (29)

=

Now, an extension of the averaging operator (3) is obtained by integrating the conservation law (27) over a space-time con-
trol volume T; x [t", t"*1], namely

Fig. 1. Notation for a general configuration on an unstructured triangular mesh.
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Q- Z F(Q) - fi;ds, (30)
‘ aTJ
where Q] is the cell average at time level n and At = t"*! — t" is the time step.
Our multi-dimensional extension of the FORCE flux on unstructured meshes is now obtained as follows: first, assuming
averages in each primary elements at time t = t" we obtain an averaged state for each face 9T} at the half-time level

s =41 3 At, by integrating the conservation laws (27) over the the secondary elements, that is the space-time control vol-
ume {V u V*} X {t“ t”+2] The averaged state at the half-time level on each face 6T’ is given by
Q'V, +Q'Vy 1 At -
Q-1 -5 (E(Q}) - E@Q)) - 7ij. (31

i+3 Vi + Vj+ 2V + V+
With these initial conditions at time t"2 = t" + 1 At, by averaging over the primary elements T; x [t’”%, t”“] yields averages at
time "1 = " + At, namely

1 n+ — n+l N

Egs. (31) and (32) constitute a first-order accurate, explicit two-step method for solving (27) on a staggered mesh. Following
the FORCE approach [43], this scheme can now be written as a one-step scheme in conservative form on a non-staggered
mesh, with a corresponding numerical flux. After some algebraic manipulations involving Gauss’ theorem (3~S;fi; = 0)
and normalizing the face-normal vectors (ﬁj2 = 1), we can recast the scheme (31) and (32) into the sought conservative form

QU -q - mZSFfS.“CE“ . %

where the resulting FORCE flux for general meshes in multiple space dimensions, called FORCE« in the following, is defined
as

B = L (B (Q1.Q)) + B (Q1.)) ). (34)

The FORCE flux on general meshes in multiple space dimensions is then the arithmetic average of two fluxes: a two-point
flux of the Lax-Wendroff type and a two-point flux of the Lax-Friedrichs type. These two component fluxes appear to be
new and are natural generalizations of the one-dimensional Lax-Wendroff and Lax-Friedrichs fluxes to general meshes in
multiple space dimensions. The Lax-Wendroff type flux is given by the physical flux F evaluated at the intermediate state
obtained from the first averaging procedure (31): -

B (2. 9) ~E(e)). @

Qn+12 _ Q?V; + anvf _ 1 AtSj (

n n =
S LS (s(a) - r@) 5

The Lax-Friedrichs-type flux for general meshes in multiple space dimensions is defined as follows:

VEQ)+VEQ)  vivy
v, +V/ v +v+ ALS;

B (Q1.0)) = 2 (Q) - Q). (37)
Using these generalized Lax-Wendroff and Lax-Friedrichs fluxes we will also consider a further generalization of the multi-
dimensional FORCE flux obtained as the weighted average (0 < w < 1) of these two fluxes, namely

PR — B (Q1,Q)) + (1 - ) B Q1 Q) (38)

This will be called the GFORCE« flux and is a straight generalization of the one-dimensional GFORCE scheme. In the next
section we study two-dimensional and three-dimensional FORCE schemes on Cartesian meshes.

3.2. FORCE schemes on Cartesian meshes

Here, for the purpose of analysis, we apply the FORCE scheme in Cartesian meshes, in two and three space dimensions.
Recall that the FORCE approach consists of identifying primary and secondary volumes or elements, application of an aver-
aging operator on each type of control volumes in succession and recovery of the conservation form of the scheme, with an
appropriate numerical flux. The primary volumes are perfectly Cartesian squares in two dimensions and cubes in three
dimensions. As secondary volumes we consider two choices: edge-based secondary volumes and vertex-based secondary
volumes. We study monotonicity, linear stability and numerical viscosity of the resulting schemes.
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3.2.1. FORCE scheme on edge-based secondary volumes

Fig. 2 illustrates the primary volumes and secondary volumes for the two-dimensional Cartesian mesh case. Here, in the
first step of the scheme one chooses edge-based secondary volumes. FORCE schemes on uniform Cartesian meshes in o
dimensions can be derived from Eqgs. (34)-(37) as special cases. In one space dimension the secondary volumes are
V=V, =1Ax and the face surface area is S;=1. In two space dimensions we have the secondary volumes
Vi =V; =1Ax* and the face surface S; = Ax. Finally, in three space dimensions we get V;" = V; = { Ax® for the secondary
volumes and S; = Ax? for the face surface. This leads to the following Cartesian versions of the multi-dimensional FORCE
fluxes, which are still averages of Lax-Wendroff type and Lax-Friedrichs type fluxes. The flux in the x-direction is

1
FO =5 (R + F) (39)
with
o 1
EY = F(Q)). (40)
11 1 aAt
Q. =5 (@ +Ql) -5 5 (FQiL,) -F@Q) (41)
and
1 n n 1 Ax ., n
El =5 (FQL) +FQ) —5 5 (@ - Q). (42)

The fluxes in the other Cartesian directions have analogous form and are not reproduced here. There are two classes of
numerical methods associated with the generalized Lax-Wendroff (40) and generalized Lax-Friedrichs (42) fluxes. For each
value of the dimension parameter o there corresponds a numerical scheme. The case o = 2 gives a generalized Lax-Wendroff
flux that is not new; it is in fact identical to the Godunov centred flux. The generalized Lax-Friedrichs schemes for oo = 2 ap-
pears to be new. In fact we have studied in detail the properties of the one-dimensional schemes corresponding to the gen-
eralized Lax-Wendroff and generalized Lax-Friedrichs schemes, regarding the dimension « a parameter open to choice. The
results are omitted.

3.2.2. FORCE scheme on vertex-based secondary volumes

Here we keep the perfectly Cartesian primary volumes C;; of area Ax?, as previously, but as secondary volumes we choose
vertex-based control volumes. This stencil was considered by Jiang and Tadmor [28]. In the first step the averaging operator
is applied to perfectly squared secondary volumes of area Ax* around each of the four vertexes of a given primary cell C;j, with
initial conditions at time ¢t = t". In the second step the averaging is applied inside the primary cell C;; with initial conditions
obtained from the first step. The four vertices of cell C;; are denoted by (i —1,j —1), (i+1,j—1),(i+1,j+1),(i—1,j+1).The
first step applied to the vertex-based secondary volumes gives

Fig. 2. Primary and secondary control volumes for the FORCE scheme on a regular Cartesian grid in two space dimensions. The secondary volumes are edge-
based.
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?j;,l = 411 (Q,; 1j-1 +QU 1 +Qu +Qf u) *% ii {F?J  —F i-1j-1 +F F_ u +Gi G?—L}'—] +Gn G?; 1] (43)
Q?:%EJ*% = ‘11 (an 1t Ql+1_] 1t Ql+lj + Qu> - % %t( {FLU 1 Fi,j—l + F?Jrlj F + Gl+1J G?+1J71 + Gu Gsz 1] (44)
Q?:fﬁl = 31 (Q?j + Qi+ Qi + Q?.jﬂ) - % % {F?Jr‘lj Ej+Fjn —Fia +Glajn — Gl + Gy — G?j]v (45)

Tl+2,l+1 = 411 (Q—FJ Qi QL+ QLJ) - % % {Fn Fl oy +Fjy —Fl +Gly — G+ Gy — Gl u] (46)

The second step applied to the primary volume C;; with initial conditions at time t = t" + J At gives the solution at time
t =t™! = t" + At in the primary volume C;; as

n 1 1 Af 1 1
Q=4 ( i ,+ Q' L+ Q' oyt Q) - i FbytE - F”*z ~F]
2

i-1j- i+]j— i+1j i-3j+d x L i+di i+1j+} Li- i-1j+]
1 At n+2 n+2 n+2 n+2
4 Ax { igig Gy ~ Gigig ~ Gy } (47)
After some algebraic manipulations, the complete scheme can be written in conservation form
n 1
+ erJ Ay [ i+ + Gu+1 - Gi.j—%] (48)
with numerical fluxes
1 n+l n+l 1 1 Ax
Fi+%.j = ) (F,‘Jr%z_j,% + Fi+%2j+%> + 16 ( ij-1 T FH»]] 175 Ar (Q-Hlj 1 Qu 1))
1 Ax 1 1 Ax
+ ﬁ <2 (Fn + FH»]J> 3 X (Q1+1J Q—u)) (F?‘H»‘l + F1+1,1+1 2 At (Q,1+lj+1 Q,u+1 )) (49)

and

1
+— 16 <2(Gn + GU“) At (Q—IJ+] Q,x,))) <Gxn+1,/ + Gr+1 j+1

In the Appendix we study the properties of the derived numerical schemes.

1 1 1 1 Ax
Gu*%:Z(G?:%ZH%JFG?h) 16<G:7”+G1 1t 2At(Q" 101 — Qi ]J>
1
2

A Q- Q). (50

3.3. Comparison between first-order FORCEx. and Rusanov fluxes

Now we show the behaviour of the proposed first-order FORCE« flux compared to the classical FORCE and Rusanov fluxes.
For doing so we use the blast-wave interaction problem proposed by Woodward and Colella [44]. The initial condition con-
sists of three constant states of an ideal gas with a ratio of specific heats given by y = 1.4. This gas is at rest between reflect-
ing walls separated by a distance of unity. The density is supposed to be p =1 everywhere, while the initial pressure
distribution is

1000 if 0 <x<0.1,
p(x,0)=¢ 0.01 if 0.1 <x<0.9, (51)
100 if 0.9 <x < 1.0.

In Fig. 3 we depict the solutions obtained using the classical Rusanov flux and FORCEx schemes, with o = 1 (the classical
FORCE scheme), o = 2 and o = 3 using 500 cells in the interval [0, 1]. The reference solution, also depicted, has been obtained
by means of the Godunov flux with exact Riemann solver using 10,000 cells in the interval [0, 1], adapting the algorithm put
forward in [42]. The output time is t,, = 0.038. Regarding the Courant number (CFL) we have taken for all fluxes 90% of their
linear stability limit. This means CFL = 0.9@ (see the Appendix) for the FORCEx schemes and CFL = 0.9 for the Rusanov
scheme.

The results obtained clearly show that when the number of space dimensions « increases, the first-order FORCEx fluxes
become less diffusive than the classical FORCE flux and also than the Rusanov flux.

4. High order extensions

Once the first-order building block of the scheme has been set up and formulated as a two-point flux, as done in the pre-
vious sections, the high order extension in space and time is straightforward. In the finite volume framework, high order in
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Fig. 3. Gas density for the 1D two-interactive blast waves problem to compare first-order Rusanov and FORCE-u fluxes (« = 1,2, 3) with 500 cells in [0, 1].
Reference solution obtained using Godunov flux with exact Riemann solver with 10,000 cells in [0, 1]. Output time t,,; = 0.0384. The figure below is a zoom
of the figure on top.

space is easily obtained using an ENO or WENO reconstruction procedure, see for example [23,27,1,39,26]. High order in time
can be achieved either following the method-of-lines approach using TVD Runge-Kutta time discretizations [20], or a fully-
discrete one-step approach as shown, e.g. in [23,40]. Recently, also the high order accurate discontinuous Galerkin schemes
have received much attention for the solution of hyperbolic conservation laws, see, e.g. [7,9,8]. It is a particular feature of this
discontinuous finite element approach that the boundary integral term is evaluated introducing a numerical flux function,
where we also can directly apply our unstructured FORCE method as deve