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This paper is about the construction of numerical fluxes of the centred type for one-step
schemes in conservative form for solving general systems of conservation laws in multiple
space dimensions on structured and unstructured meshes. The work is a multi-dimen-
sional extension of the one-dimensional FORCE flux and is closely related to the work of
Nessyahu–Tadmor and Arminjon. The resulting basic flux is first-order accurate and mono-
tone; it is then extended to arbitrary order of accuracy in space and time on unstructured
meshes in the framework of finite volume and discontinuous Galerkin methods. The per-
formance of the schemes is assessed on a suite of test problems for the multi-dimensional
Euler and Magnetohydrodynamics equations on unstructured meshes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The pioneering work of Lax and Wendroff [30], and more recently that of Hou and LeFloch [25], have established, theo-
retically, that numerical methods for systems of non-linear hyperbolic conservation laws must be conservative. Then, a key
task is the prescription of monotone intercell numerical fluxes. These will then constitute the building block for a wide range
of numerical methods constructed in the frameworks of finite volume and discontinuous Galerkin finite element methods, in
either fully discrete or semi-discrete form, on structured or unstructured meshes. The construction of numerical fluxes has
been a central research issue for over five decades, of which two very prominent and representative examples are the Lax–
Friedrichs flux [29] and the Godunov flux [19]. These two methods introduced key ideas that have remained the pillars of
current research. They are representative of the two distinct approaches for prescribing numerical fluxes, respectively
termed centred (or symmetric) and upwind (or Riemann-problem based, or characteristic-based). Upwind schemes, explicitly
use wave propagation information contained in the differential equations for the construction of the numerical flux, which is
usually accomplished by solving a local one-dimensional Riemann problem, in the direction normal to a cell interface. The
(classical) Riemann problem is the Cauchy problem for the relevant system of conservation laws along with piece-wise con-
stant initial conditions, usually the cell averages on each side of the interface. Centred schemes, on the other hand, do not
explicitly use wave propagation information contained in the corresponding Riemann problem. That is, centred schemes do
. All rights reserved.
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not solve the Riemann problem in the conventional manner. However these schemes are not independent of the Riemann
problem, as they use both the differential equations and the initial conditions of the Riemann problem.

This paper is about the construction of numerical fluxes of the centred type, for general hyperbolic systems in conserva-
tion-law form, in multiple space dimensions. The schemes are derived for Cartesian and non-Cartesian structured elements
and for unstructured triangular and tetrahedral elements. A key ingredient of the present centred schemes is an averaging
operator that results from the integral form of the conservation laws applied to appropriately chosen control volumes. Such
operator is valid for both classical and weak solutions of conservations laws and is applicable to the one and the multi-
dimensional cases. The present work builds upon two lines of current developments regarding centred methods. The first
relates to the centred schemes reported by Nessyahu and Tadmor [35]. For extensions to unstructured meshes see the work
of Arminjon and collaborators, e.g. [2], and for high order extensions see the work presented in [32,5,33]. The second line
results from the FORCE scheme proposed by Toro and Billett [43]. As a matter of fact, the present work is a multi-dimensional
extension of the FORCE scheme. Both approaches have the common feature of applying an averaging operator on staggered
control volumes. In the Nessyahu–Tadmor approach the schemes consist of a two-step procedure on staggered grids and do
not have a conservative form; in addition, the scheme is subject to a CFL restriction of 1/2. The FORCE scheme is a one-step
procedure on a non-staggered grid and has a conservative form with a corresponding numerical flux, called the FORCE flux; it
is subject to a CFL restriction of unity. The Nessyahu–Tadmor scheme is second-order accurate for smooth solutions and
essentially non-oscillatory for discontinuous solutions, while the FORCE scheme is first-order accurate and monotone. The
Nessyahu–Tadmor schemes have also been applied to multi-dimensional problems on regular Cartesian grids by Jiang
and Tadmor [28], and to unstructured triangular and tetrahedral meshes by Arminjon and collaborators, see for example
[2]. Available theoretical results for the Nessyahu–Tadmor schemes include proofs of convergence; Haasdonk et al. [21]
proved convergence of the first-order version of the Nessyahu–Tadmor scheme for non-linear scalar conservation laws on
unstructured triangular meshes. For the FORCE scheme convergence was proved by Chen and Toro [6] for the case of two
non-linear systems of conservation laws in one space dimension, namely the isentropic equation of gas dynamics and the
non-linear shallow water equations with a source term due to bed elevation.

In this paper we extend the FORCE approach to non-linear multi-dimensional systems of hyperbolic equations in conser-
vation-law form. The schemes are one-step schemes in conservative form on unstaggered general meshes, where numerical
fluxes emerge in a very natural way. Centred fluxes may be seen as being an appropriate solution of the Riemann problem
without resolving the wave structure. For the purpose of analysis, FORCE schemes are also constructed on regular Cartesian
meshes in two and three space dimensions. Various stencil configurations are explored and detailed analysis of monotonic-
ity, linear stability and numerical viscosity is carried out. The most successful stencil configurations are extended to trian-
gular meshes in two space dimensions and tetrahedral elements in three space dimensions.

The rest of the paper is structured as follows. Section 2 sets the background and reviews the FORCE and Nessyahu–Tad-
mor approaches, discussing common features and differences. In Section 3 we extend the FORCE approach and construct
numerical fluxes for two and three dimensional general meshes; we also specialize the FORCE schemes to regular Cartesian
meshes in two and three space dimensions for the purpose of analysis of the schemes. In Section 4 we extend the first-order
monotone multidimensional FORCE schemes to arbitrary order of accuracy in both space and time following the ADER
approach on unstructured meshes in two and three space dimensions (see, for instance [12,14,11]). In the same section
we also compute convergence rates for smooth solutions. In Section 5 we assess the performance of the numerical schemes
for shocked flows via a suite of test problems for the Euler and relativistic MHD equations. Conclusions are drawn in Section
6. In Appendix A and Appendix B we analyse the monotonicity, linear stability and numerical viscosity of the multidimen-
sional FORCE schemes on Cartesian meshes.

2. Background

Here we review the one-dimensional FORCE flux in the framework of finite volume methods and discuss its relation with
the Nessyahu–Tadmor approach.

2.1. The finite volume framework

We consider a one-dimensional system of m non-linear hyperbolic equations in conservation-law form
@tQ þ @xFðQ Þ ¼ 0; x 2 R; t > 0; ð1Þ

where Q ðx; tÞ is the vector of conserved variables and FðQ Þ is the vector of fluxes. We consider the Cauchy problem for (1)
with initial condition of the form
Q ðx; tnÞ ¼ Q ð0ÞðxÞ: ð2Þ

Given the control volume V � xi�1

2
; xiþ1

2

h i
� ½tn; tnþ1� of dimensions Dt ¼ tnþ1 � tn and Dx ¼ xiþ1

2
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2
, one can integrate system
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This operator defines an average of the solution of the Cauchy problem (1) at time t ¼ tnþ1, for x 2 xi�1
2
; xiþ1

2

h i
, requiring the

spatial integration of the initial condition and the evaluation of the flux time integrals at x ¼ xi�1
2

and x ¼ xiþ1
2
. Eq. (3) can also

be written as
Q nþ1
i ¼ Q n

i �
Dt
Dx

Fiþ1
2
� Fi�1

2

h i
ð4Þ
with the following definitions:
Q n
i ¼

1
Dx

Z x
iþ1

2

x
i�1

2

Q ðx; tnÞdx; Fiþ1
2
¼ 1

Dt

Z tnþ1

tn
F Q xiþ1

2
; t

� �� �
dt: ð5Þ
Recall that the exact relation (4) gives rise to finite volume methods to solve (1) approximately in which Q n
i and Fiþ1

2
are

interpreted as approximations to the respective integrals (5).

2.2. Classical finite volume schemes

The Godunov approach [19] exploits the piece-wise constant distribution of the data Q n
i and, locally, defines (classical)

Riemann problems
PDEs : @tQ þ @xFðQ Þ ¼ 0;

IC : Q ðx;0Þ ¼
Q n

i if x < 0;
Q n

iþ1 if x > 0

(
ð6Þ
with similarity solutions denoted by Q iþ1
2
ðx=tÞ, where x and t are understood as local coordinates. Then the Godunov intercell

numerical flux is
Fiþ1
2
¼ FðQ iþ1

2
ð0ÞÞ: ð7Þ
The solution Q iþ1
2
ðx=tÞ could be exact or approximate. In addition one could define approximations Fiþ1

2
, directly, without

requiring a state Q iþ1
2
ðx=tÞ. For background on Godunov methods, see for example, [17,31,42]. Methods that explicitly exploit

wave propagation information emanating from the solution of the Riemann problem are generally called upwind methods.
The simplest upwind method is Rusanov’s method [37], which only extracts an estimate for an upper bound for the maxi-
mum propagation speed in the local Riemann problem. One can define this scheme as a ‘‘one-wave solver”. A two-wave sol-
ver is the HLL scheme [22], which requires estimates for lower and upper bounds for the speeds emanating from the local
Riemann problem. We shall speak of a complete Riemann solver for the one whose wave model contains all m characteristic
fields present in the exact solution. Otherwise, the Riemann solver will be termed incomplete.

It is possible to construct numerical fluxes Fiþ1
2
, very approximately, without explicitly solving the Riemann problem (6),

provided that what actually defines the Riemann problem is preserved, that is, the differential equations and the initial con-
dition. Methods of this type include the so-called centred methods, or symmetric methods. Classical centred methods in-
clude the Lax–Wendroff method [30], the Lax–Friedrichs method [29] and the Godunov centred method [18], not to be
mistaken with the Godunov upwind method.

The popular two-step version of the Lax–Wendroff method uses the averaging operator (3) in the control volume
½xi; xiþ1� � tn; tn þ 1

2 Dt
� �

to obtain an integral average of the solution of the Riemann problem (6) at time tn þ 1
2 Dt, for

x 2 ½xi; xiþ1� as follows:
Q LW
iþ1

2
¼ 1

2
ðQ n

i þ Q n
iþ1Þ �

1
2

Dt
Dx
½FðQ n

iþ1Þ � FðQ n
i Þ�: ð8Þ
Then, the numerical flux is
FLW
iþ1

2
¼ FðQ LW

iþ1
2
Þ: ð9Þ
The Godunov centred method is analogous to the Lax–Wendroff method, it first computes an averaged state at the full time
level
Q GC
iþ1

2
¼ 1

2
ðQ n

i þ Q n
iþ1Þ �

Dt
Dx
½FðQ n

iþ1Þ � FðQ n
i Þ�; ð10Þ
and then computes the corresponding numerical flux as
FGC
iþ1

2
¼ F Q GC

iþ1
2

� �
: ð11Þ
Compare the Godunov upwind flux (7) with the centred fluxes (9) and (11). Also, the classical Lax–Friedrichs method may be
constructed with reference to the (staggered) Riemann problem
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PDEs : @tQ þ @xFðQ Þ ¼ 0;

IC : Q ðx;0Þ ¼
Q n

i�1 if xi < 0;
Q n

iþ1 if xi > 0:

(
ð12Þ
One can define directly a cell average Q nþ1
i at the new time level for cell i as an average of the solution bQ iðx; tÞ of this Rie-

mann problem at the half-time level, namely
Q nþ1
i ¼ 1

Dx

Z x
iþ1

2

x
i�1

2

bQ i x; tn þ 1
2

Dt
� �

dx: ð13Þ
Now, instead of solving the Riemann problem (12) to calculate (13) explicitly one applies the averaging operator to obtain
Q nþ1
i ¼ 1

2
ðQ n

i þ Q n
iþ1Þ �

1
2

Dt
Dx
½FðQ n

iþ1Þ � FðQ n
i Þ�; ð14Þ
which if written in conservative form (4) has numerical flux
FLF
iþ1

2
¼ 1

2
½FðQ n

i Þ þ FðQ n
iþ1Þ� �

1
2

Dx
Dt
ðQ n

iþ1 � Q n
i Þ: ð15Þ
2.3. The FORCE scheme

The FORCE flux, first communicated in [41], was derived as a deterministic analogue of the staggered-grid version of
Glimm’s method [16], or Random Choice Method (RCM). This version of RCM advances the solution in two steps by randomly
sampling exact solutions of Riemann problems using a staggered grid. The FORCE approach replaces randomly sampled exact
solutions of classical (piece-wise constant data) Riemann problems in a two-stage procedure by an averaging operator at
each stage. The end result is a deterministic one-step method, in conservative form, on a non-staggered grid, with a numer-
ical flux, the FORCE flux. We note that there is a close relationship between the FORCE scheme and the scheme proposed
earlier by Nessyahu and Tadmor [35], as we shall explain later.

Given the two local Riemann problem solutions Q i�1
2
ðx=tÞ and Q iþ1

2
ðx=tÞ, at the (local) time t ¼ 1

2 Dt we apply the averaging
operator to obtain, respectively
Q nþ1
2

i�1
2
¼ 1

2
ðQ n
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i Þ �

1
2

Dt
Dx
½FðQ n

i Þ � FðQ n
i�1Þ�;

Q nþ1
2

iþ1
2
¼ 1

2
ðQ n

i þ Q n
iþ1Þ �

1
2

Dt
Dx
½FðQ n

iþ1Þ � FðQ n
i Þ�:

ð16Þ
The complete solution is restored back to the cell Ii � xi�1
2
; xiþ1

2

h i
in the second step by averaging the solution of the Riemann

problem
PDEs : @tQ þ @xFðQ Þ ¼ 0;

IC : Q ðx;0Þ ¼
Q nþ1

2
i�1

2
if xi < 0;

Q nþ1
2

iþ1
2

if xi > 0

8><>: ð17Þ
at time t ¼ Dt, obtaining
Q nþ1
i ¼ 1

2
ðQ nþ1

2
i�1

2
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iþ1

2
Þ � 1

2
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Þ

h i
: ð18Þ
The solution Q nþ1
i at the complete time step t ¼ Dt (globally, at time t ¼ tn þ Dt ¼ tnþ1) may now be expressed in terms of the

conservative one-step formula (4), yielding, as a by product, the intercell numerical flux
FFO
iþ1

2
¼ 1

2
F Q nþ1

2
iþ1

2

� �
þ 1

2
½FðQ n

i Þ þ FðQ n
iþ1Þ� �

1
2

Dx
Dt
ðQ n

iþ1 � Q n
i Þ

� 	
ð19Þ
called the FORCE flux. It turns out that this flux is in fact the mean between the two-step version of the Lax–Wendroff flux (9)
and the Lax–Friedrichs flux (15), that is
FFO
iþ1

2
¼ 1

2
FLW

iþ1
2
þ FLF

iþ1
2

� �
: ð20Þ
We also recall some basic properties of FORCE and related schemes in terms of the model hyperbolic equation
@tqðx; tÞ þ k@xqðx; tÞ ¼ 0; k : constant: ð21Þ
Table 1 summarizes the results, where c ¼ kDt
Dx is the Courant number. Note that the first-order Godunov centred scheme is

not monotone in its full range of linear stability. The FORCE scheme, as the classical Lax–Friedrichs scheme, is monotone in
its full range of linear stability.



Table 1
Accuracy, linear stability and monotonicity of selected schemes.

Accuracy Linear stability Monotonicity

Godunov upwind First-order 0 6 jcj 6 1 Yes
Lax–Wendroff Second-order 0 6 jcj 6 1 No
Godunov centred First-order 0 6 jcj 6 1

2

ffiffiffi
2
p

Not for 0 6 jcj 6 1
2

Lax–Friedrichs First-order 0 6 jcj 6 1 Yes
FORCE First-order 0 6 jcj 6 1 Yes
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For more properties of the FORCE flux see [43]. See also [6], where the scheme is shown to be convergent for the non-
linear shallow water equations and for isentropic gas dynamics.

Modern numerical methods for hyperbolic conservation laws are, first of all, conservative. This requires a numerical flux.
If first-order of accuracy is regarded as sufficient, then the numerical flux must be monotone (for the scalar case). If high
accuracy, ideally in both space and time, is desirable, for smooth solutions, then the schemes must also be free from spurious
oscillations in the vicinity of large gradients, shock waves in particular. But according to Godunov’s theorem [19], these two
requirements are contradictory, for linear schemes. The only way out is to construct non-linear schemes. These are based on
two basic building blocks: non-linear spatial reconstruction operators and a basic first-order monotone flux. From this point
of view, the only useful schemes from Table 1 are the Godunov upwind, Lax–Friedrichs and the FORCE schemes. However, it
is known that it is not possible to construct second-order TVD schemes based on the Lax–Friedrichs scheme, as reported in
[43], leaving the Godunov upwind scheme and the FORCE scheme. The former resolves more fully the Riemann problem and
the latter approximates the solution of the Riemann problem by a combination of averages.

2.4. The Nessyahu–Tadmor scheme

The Nessyahu and Tadmor approach [35] in one space dimension considers a sequence of generalized (non classical) Rie-
mann problems, whose initial conditions are given by piece-wise non-linear reconstructions of first degree polynomials.
Then the averaging operator is applied in a two-step, staggered-grid fashion. In the first step one considers the Riemann
problem
PDEs : @tQ þ @xFðQ Þ ¼ 0;

IC : Q ðx;0Þ ¼
PiðxÞ ¼ Q n

i þ ðx� xiÞDi if x < xiþ1
2
;

Piþ1ðxÞ ¼ Q n
iþ1 þ ðx� xiþ1ÞDiþ1 if x > xiþ1

2
;

(
ð22Þ
where Di is a vector of suitable slopes, chosen so as to control spurious oscillations. Applying the averaging operator (3) in
the control volume ½xi; xiþ1� � ½tn; tn þ dt� one obtains an integral average of the solution at time tn þ dt, for x 2 ½xi; xiþ1�, as
follows:
bQ iþ1
2
¼ 1

2
ðQ n

i þ Q n
iþ1Þ �

1
8

DxðDi � Diþ1Þ �
1
dt

Z tnþdt

tn
FðQ ðxiþ1; tÞÞdt � 1

dt

Z tnþdt

tn
FðQ ðxi; tÞÞdt

" #
: ð23Þ
The fluxes are computed by a mid-point rule approximation to the time integrals. For example, for the flux at xi the Ness-
yahu–Tadmor approach proceeds as follows. By means of the Cauchy–Kowalewski method one obtains, at xi, a state bQ i given
as
bQ i ¼ Q n
i þ

1
2

dt@tQ
n
i ¼ Q n

i �
1
2

dt@xFðQ n
i Þ: ð24Þ
Then the required flux approximation is
bFi ¼ Fð bQ iÞ: ð25Þ
An analogous procedure is applied at xiþ1. For the second step of the method one has the set of cell averages f bQ iþ1
2
g at the

interfaces. Again, a reconstruction operator is applied and a generalized Riemann problem
PDEs : @tQ þ @xFðQ Þ ¼ 0;

IC : Q ðx;0Þ ¼
bP i�1

2
ðxÞ ¼ bQ i�1

2
þ x� xi�1

2

� �bDi�1
2

if x < xi;bPiþ1
2
ðxÞ ¼ bQ iþ1

2
þ x� xiþ1

2

� �bDiþ1
2

if x > xi

8><>: ð26Þ
is considered. Applying the averaging operator (3) in the control volume ½xi�1
2
; xiþ1

2
� � ½tn þ dt; tn þ dt þ bdt� one obtains an

integral average of the solution of the Riemann problem (26) at time tn þ dt þ bdt, for x 2 xi�1
2
; xiþ1

2

h i
, completing the solution

procedure after a time Dt ¼ dt þ bdt, restoring solution values back to the centres of the volumes.
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Remarks on the FORCE and Nessyahu–Tadmor schemes: First we note that none of the methods discussed so far can escape
the Riemann problem. Upwind methods resolve, exactly or approximately, the details of the wave structure emanating from
the interface. Instead, the so-called centred methods, using the integral form of the conservation laws, average the solution
of the Riemann problem in appropriately chosen control volumes. The Nessyahu–Tadmor scheme averages solutions of gen-
eralized Riemann problems, resulting in a second-order accurate scheme, for smooth solutions, and essentially non-oscilla-
tory at shocks, which requires non-linear reconstructions twice, one in each sub-step. Moreover, each sub-step is subject to
the CFL restriction Ccfl 6 1=2 and the time steps dt and bdt are not necessarily related. We note also that the stencil of the
complete Nessyahu–Tadmor scheme has 6 points, in contrast to most one-step TVD methods.

The relationship between the FORCE and the Nessyahu–Tadmor schemes can be summarized as follows: the former can
be obtained from the latter if the following conditions were observed: (i) no reconstruction in the Nessyahu–Tadmor
scheme, (ii) dt ¼ bdt ¼ 1

2 Dt imposed, (iii) algebraic manipulations performed so as to end up with a one-step conservative
scheme, with a corresponding numerical flux.

The next section addresses the first main point of this paper, which is the construction of a multi-dimensional version of
the FORCE scheme that is applicable to general meshes in two and three space dimensions.

3. FORCE schemes in multiple space dimensions

Consider a general system of non-linear conservation laws in a space dimensions
@tQ þ divðFðQ ÞÞ ¼ 0; ð27Þ
where F ¼ ðf ðQ Þ; gðQ Þ;hðQ ÞÞ is the flux tensor.
We first construct the schemes in the setting of general meshes and later, for the purpose of analysis of the schemes, we

specialize the approach to Cartesian meshes in two and three space dimensions.

3.1. FORCE schemes on general meshes

We assume a conforming tessellation TX of the computational domain X � Ra by elements Ti such that
TX ¼
[

i

Ti: ð28Þ
Each element Ti has nf plane faces @Tj
i of area Sj, with associated outward pointing face-normal vectors ~nj. The total volume

jTij of element Ti is sub-divided into sub-volumes V�j generated by connecting the barycentre of element Ti with the vertices
of face j. The corresponding adjacent sub-volume in the neighboring element that shares face @Tj

i with element Ti is denoted
as Vþj . Fig. 1 illustrates the above definitions and notation for the two-dimensional case. Note that the intersection of V�j and
Vþj gives the edge j of the element Ti. With reference to Fig. 1 we distinguish two kinds of elements: primary elements Ti, at
which the solution is sought at each time step, and secondary elements formed by V�j

S
Vþj , for j ¼ 1;2;3. Obviously, the sub-

volumes jV�j j add up to the total volume of Ti, that is
jTij ¼
Xnf

j¼1

jV�j j: ð29Þ
Now, an extension of the averaging operator (3) is obtained by integrating the conservation law (27) over a space-time con-
trol volume Ti � ½tn; tnþ1�, namely
Fig. 1. Notation for a general configuration on an unstructured triangular mesh.
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Q nþ1
i ¼ Q n

i �
Dt
jTij

Xnf

j¼1

Z
@Tj

i

FðQ Þ �~nj dS; ð30Þ
where Q n
i is the cell average at time level n and Dt ¼ tnþ1 � tn is the time step.

Our multi-dimensional extension of the FORCE flux on unstructured meshes is now obtained as follows: first, assuming
averages in each primary elements at time t ¼ tn we obtain an averaged state for each face @Tj

i at the half-time level
tnþ1

2 ¼ tn þ 1
2 Dt, by integrating the conservation laws (27) over the the secondary elements, that is the space-time control vol-

ume fV�j [ Vþj g � tn; tnþ1
2

h i
. The averaged state at the half-time level on each face @Tj

i is given by
Q nþ1
2

jþ1
2
¼

Q n
i V�j þ Q n

j Vþj
V�j þ Vþj

� 1
2

DtSj

V�j þ Vþj
ðFðQ n

j Þ � FðQ n
i ÞÞ �~nj: ð31Þ
With these initial conditions at time tnþ1
2 ¼ tn þ 1

2 Dt, by averaging over the primary elements Ti � tnþ1
2; tnþ1

h i
yields averages at

time tnþ1 ¼ tn þ Dt, namely
Q nþ1
i ¼ 1

jTij
Xnf

j¼1

Q nþ1
2

jþ1
2

V�j �
1
2

DtSjF Q nþ1
2

jþ1
2

� �
�~nj

� �
: ð32Þ
Eqs. (31) and (32) constitute a first-order accurate, explicit two-step method for solving (27) on a staggered mesh. Following
the FORCE approach [43], this scheme can now be written as a one-step scheme in conservative form on a non-staggered
mesh, with a corresponding numerical flux. After some algebraic manipulations involving Gauss’ theorem ð

P
jSj~nj ¼ 0Þ

and normalizing the face-normal vectors ð~n2
j ¼ 1Þ, we can recast the scheme (31) and (32) into the sought conservative form
Q nþ1
i ¼ Q n

i �
Dt
jTij

Xnf

j¼1

SjFFORCEa
jþ1

2
�~nj; ð33Þ
where the resulting FORCE flux for general meshes in multiple space dimensions, called FORCEa in the following, is defined
as
FFORCEa
jþ1

2
¼ 1

2
FLWa

jþ1
2

Q n
i ;Q

n
j

� �
þ FLFa

jþ1
2

Q n
i ;Q

n
j

� �� �
: ð34Þ
The FORCE flux on general meshes in multiple space dimensions is then the arithmetic average of two fluxes: a two-point
flux of the Lax–Wendroff type and a two-point flux of the Lax–Friedrichs type. These two component fluxes appear to be
new and are natural generalizations of the one-dimensional Lax–Wendroff and Lax–Friedrichs fluxes to general meshes in
multiple space dimensions. The Lax–Wendroff type flux is given by the physical flux F evaluated at the intermediate state
obtained from the first averaging procedure (31):
FLWa
jþ1

2
Q n

i ;Q
n
j

� �
¼ F Q nþ1

2
jþ1

2

� �
; ð35Þ

Q nþ1
2

jþ1
2
¼

Q n
i V�j þ Q n

j Vþj
V�j þ Vþj

� 1
2

DtSj

V�j þ Vþj
F Q n

j

� �
� F Q n

i

� �� �
�~nj: ð36Þ
The Lax–Friedrichs-type flux for general meshes in multiple space dimensions is defined as follows:
FLFa
jþ1

2
Q n

i ;Q
n
j

� �
¼

V�j F Q n
j

� �
þ Vþj F Q n

i

� �
V�j þ Vþj

�
V�j Vþj

V�j þ Vþj

2
DtSj

Q n
j � Q n

i

� �
~nT

j : ð37Þ
Using these generalized Lax–Wendroff and Lax–Friedrichs fluxes we will also consider a further generalization of the multi-
dimensional FORCE flux obtained as the weighted average ð0 6 x 6 1Þ of these two fluxes, namely
FGFORCEa
jþ1

2
¼ xFLWa

jþ1
2

Q n
i ;Q

n
j

� �
þ ð1�xÞFLFa

jþ1
2

Q n
i ;Q

n
j

� �
: ð38Þ
This will be called the GFORCEa flux and is a straight generalization of the one-dimensional GFORCE scheme. In the next
section we study two-dimensional and three-dimensional FORCE schemes on Cartesian meshes.

3.2. FORCE schemes on Cartesian meshes

Here, for the purpose of analysis, we apply the FORCE scheme in Cartesian meshes, in two and three space dimensions.
Recall that the FORCE approach consists of identifying primary and secondary volumes or elements, application of an aver-
aging operator on each type of control volumes in succession and recovery of the conservation form of the scheme, with an
appropriate numerical flux. The primary volumes are perfectly Cartesian squares in two dimensions and cubes in three
dimensions. As secondary volumes we consider two choices: edge-based secondary volumes and vertex-based secondary
volumes. We study monotonicity, linear stability and numerical viscosity of the resulting schemes.
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3.2.1. FORCE scheme on edge-based secondary volumes
Fig. 2 illustrates the primary volumes and secondary volumes for the two-dimensional Cartesian mesh case. Here, in the

first step of the scheme one chooses edge-based secondary volumes. FORCE schemes on uniform Cartesian meshes in a
dimensions can be derived from Eqs. (34)–(37) as special cases. In one space dimension the secondary volumes are
Vþj ¼ V�j ¼ 1

2 Dx and the face surface area is Sj ¼ 1. In two space dimensions we have the secondary volumes
Vþj ¼ V�j ¼ 1

4 Dx2 and the face surface Sj ¼ Dx. Finally, in three space dimensions we get Vþj ¼ V�j ¼ 1
6 Dx3 for the secondary

volumes and Sj ¼ Dx2 for the face surface. This leads to the following Cartesian versions of the multi-dimensional FORCE
fluxes, which are still averages of Lax–Wendroff type and Lax–Friedrichs type fluxes. The flux in the x-direction is
Fig. 2.
based.
FFORCE
iþ1

2
¼ 1

2
FLWa

iþ1
2
þ FLFa

iþ1
2

� �
ð39Þ
with
FLWa
iþ1

2
¼ F Q nþ1

2
jþ1

2

� �
; ð40Þ

Q nþ1
2

jþ1
2
¼ 1

2
Q n

i þ Q n
iþ1

� �
� 1

2
aDt
Dx

FðQ n
iþ1Þ � FðQ n

i Þ
� �

ð41Þ
and
FLFa
iþ1

2
¼ 1

2
FðQ n

iþ1Þ þ FðQ n
i Þ

� �
� 1

2
Dx
aDt

Q n
iþ1 � Q n

i

� �
: ð42Þ
The fluxes in the other Cartesian directions have analogous form and are not reproduced here. There are two classes of
numerical methods associated with the generalized Lax–Wendroff (40) and generalized Lax–Friedrichs (42) fluxes. For each
value of the dimension parameter a there corresponds a numerical scheme. The case a ¼ 2 gives a generalized Lax–Wendroff
flux that is not new; it is in fact identical to the Godunov centred flux. The generalized Lax–Friedrichs schemes for a ¼ 2 ap-
pears to be new. In fact we have studied in detail the properties of the one-dimensional schemes corresponding to the gen-
eralized Lax–Wendroff and generalized Lax–Friedrichs schemes, regarding the dimension a a parameter open to choice. The
results are omitted.

3.2.2. FORCE scheme on vertex-based secondary volumes
Here we keep the perfectly Cartesian primary volumes Ci;j of area Dx2, as previously, but as secondary volumes we choose

vertex-based control volumes. This stencil was considered by Jiang and Tadmor [28]. In the first step the averaging operator
is applied to perfectly squared secondary volumes of area Dx2 around each of the four vertexes of a given primary cell Ci;j, with
initial conditions at time t ¼ tn. In the second step the averaging is applied inside the primary cell Ci;j with initial conditions
obtained from the first step. The four vertices of cell Ci;j are denoted by i� 1

2 ; j� 1
2

� �
; iþ 1

2 ; j� 1
2

� �
; iþ 1

2 ; jþ 1
2

� �
; i� 1

2 ; jþ 1
2

� �
. The

first step applied to the vertex-based secondary volumes gives
Primary and secondary control volumes for the FORCE scheme on a regular Cartesian grid in two space dimensions. The secondary volumes are edge-
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Q nþ1
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The second step applied to the primary volume Ci;j with initial conditions at time t ¼ tn þ 1
2 Dt gives the solution at time

t ¼ tnþ1 ¼ tn þ Dt in the primary volume Ci;j as
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i;j ¼

1
4

Q nþ1
2

i�1
2;j�

1
2
þ Q nþ1

2
iþ1

2;j�
1
2
þ Q nþ1

2
iþ1

2;jþ
1
2
þ Q nþ1

2
i�1

2;jþ
1
2

� �
� 1

4
Dt
Dx

Fnþ1
2

iþ1
2;j�

1
2
þ Fnþ1

2
iþ1

2;jþ
1
2
� Fnþ1

2
i�1

2;j�
1
2
� Fnþ1

2
i�1

2;jþ
1
2

h i
� 1

4
Dt
Dx

Gnþ1
2

i�1
2;jþ

1
2
þ Gnþ1

2
iþ1

2;jþ
1
2
� Gnþ1

2
i�1

2;j�
1
2
� Gnþ1

2
iþ1

2;j�
1
2

h i
: ð47Þ
After some algebraic manipulations, the complete scheme can be written in conservation form
Q nþ1
i;j ¼ Q n
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with numerical fluxes
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In the Appendix we study the properties of the derived numerical schemes.

3.3. Comparison between first-order FORCEa and Rusanov fluxes

Now we show the behaviour of the proposed first-order FORCEa flux compared to the classical FORCE and Rusanov fluxes.
For doing so we use the blast-wave interaction problem proposed by Woodward and Colella [44]. The initial condition con-
sists of three constant states of an ideal gas with a ratio of specific heats given by c ¼ 1:4. This gas is at rest between reflect-
ing walls separated by a distance of unity. The density is supposed to be q ¼ 1 everywhere, while the initial pressure
distribution is
pðx;0Þ ¼
1000 if 0 < x 6 0:1;
0:01 if 0:1 < x 6 0:9;
100 if 0:9 < x 6 1:0:

8><>: ð51Þ
In Fig. 3 we depict the solutions obtained using the classical Rusanov flux and FORCEa schemes, with a ¼ 1 (the classical
FORCE scheme), a ¼ 2 and a ¼ 3 using 500 cells in the interval [0, 1]. The reference solution, also depicted, has been obtained
by means of the Godunov flux with exact Riemann solver using 10,000 cells in the interval [0, 1], adapting the algorithm put
forward in [42]. The output time is tout ¼ 0:038. Regarding the Courant number (CFL) we have taken for all fluxes 90% of their
linear stability limit. This means CFL ¼ 0:9

ffiffiffiffiffiffiffiffi
2a�1
p

a (see the Appendix) for the FORCEa schemes and CFL ¼ 0:9 for the Rusanov
scheme.

The results obtained clearly show that when the number of space dimensions a increases, the first-order FORCEa fluxes
become less diffusive than the classical FORCE flux and also than the Rusanov flux.

4. High order extensions

Once the first-order building block of the scheme has been set up and formulated as a two-point flux, as done in the pre-
vious sections, the high order extension in space and time is straightforward. In the finite volume framework, high order in



Distance

D
en
si
ty

0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

Reference solution
Rusanov
Force (alpha=1)
Force (alpha=2)
Force (alpha=3)

Distance

D
en
si
ty

0.65 0.7 0.75 0.8
3

4

5

6 Reference solution
Rusanov
Force (alpha=1)
Force (alpha=2)
Force (alpha=3)

Fig. 3. Gas density for the 1D two-interactive blast waves problem to compare first-order Rusanov and FORCE-a fluxes ða ¼ 1;2;3Þ with 500 cells in [0, 1].
Reference solution obtained using Godunov flux with exact Riemann solver with 10,000 cells in [0, 1]. Output time tout ¼ 0:0384. The figure below is a zoom
of the figure on top.
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space is easily obtained using an ENO or WENO reconstruction procedure, see for example [23,27,1,39,26]. High order in time
can be achieved either following the method-of-lines approach using TVD Runge–Kutta time discretizations [20], or a fully-
discrete one-step approach as shown, e.g. in [23,40]. Recently, also the high order accurate discontinuous Galerkin schemes
have received much attention for the solution of hyperbolic conservation laws, see, e.g. [7,9,8]. It is a particular feature of this
discontinuous finite element approach that the boundary integral term is evaluated introducing a numerical flux function,
where we also can directly apply our unstructured FORCE method as developed in this paper. In fact, we are convinced that it
is a main key feature of the first-order version of our unstructured FORCE method that it can be cast into a two-point numer-
ical flux, which can then be simply implemented in a straightforward manner in existing high order codes for hyperbolic
conservation laws, using either the finite volume or the discontinuous Galerkin framework.

In this paper, we implement the unstructured FORCE flux in the unified framework of PNPM schemes presented in [11]
that contains fully-discrete one-step high order finite volume and discontinuous Galerkin finite element schemes as special





Table 2
Numerical convergence results obtained with P0PM finite volume schemes with the new unstructured FORCE flux (left), the Rusanov scheme (middle) and the
HLLE flux (right). Second to sixth order in space and time.

FORCE Rusanov HLLE

NG L2 OL2 tCPU½s� L2 OL2 tCPU½s� L2 OL2 tCPU½s�

P0P1ðO2Þ
16 3.40E�01 1.0 3.87E�01 1.1 2.68E�01 1.1
32 1.06E�01 1.7 9.2 1.27E�01 1.6 9.0 7.84E�02 1.8 9.1
64 3.13E�02 1.8 67.6 3.78E�02 1.7 71.7 2.17E�02 1.9 72.3

128 9.08E�03 1.8 626.1 9.97E�03 1.9 659.7 5.31E�03 2.0 671.1
P0P2ðO3Þ

16 3.04E�01 1.8 3.46E�01 1.9 2.47E�01 2.0
32 7.17E�02 2.1 14.5 8.67E�02 2.0 17.1 5.14E�02 2.3 15.3
64 1.35E�02 2.4 112.0 1.66E�02 2.4 120.0 9.91E�03 2.4 120.4

128 2.13E�03 2.7 1053 2.40E�03 2.8 1139 1.37E�03 2.9 1075
P0P3ðO4Þ

16 7.01E�02 3.5 8.44E�02 3.5 5.89E�02 3.7
32 1.57E�02 2.2 27.8 1.91E�02 2.1 27.0 1.15E�02 2.4 27.5
64 1.10E�03 3.8 199.0 1.41E�03 3.8 207.5 8.27E�04 3.8 211.8

128 7.62E�05 3.8 1994 8.78E�05 4.0 1989 5.13E�05 4.0 1874
P0P4ðO5Þ

16 6.41E�02 7.2 7.54E�02 6.8 5.32E�02 8.0
32 1.30E�02 2.3 50.0 1.58E�02 2.3 51.7 1.01E�02 2.4 54.8
64 6.62E�04 4.3 390.0 8.31E�04 4.2 397.7 5.18E�04 4.3 402.6

128 2.75E�05 4.6 3501 3.14E�05 4.7 3604 1.88E�05 4.8 3516
P0P5ðO6Þ

16 4.79E�02 13.7 5.18E�02 13.5 5.27E�02 18.1
32 3.07E�03 4.0 108.3 3.56E�03 3.9 105.8 2.39E�03 4.5 113.7
64 8.73E�05 5.1 767.1 1.08E�04 5.0 783.4 6.58E�05 5.2 775.8

128 1.37E�06 6.0 6329 1.49E�06 6.2 6450 9.06E�07 6.2 6472
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and sixth order of accuracy in space and time. We note that the two PNPM schemes are slightly more accurate and faster than
the corresponding DG schemes at the same formal order of accuracy, see Table 3. More details on this topic can be found in
[11].

5. Applications

Here we apply the high order version of the unstructured FORCE scheme of this paper to established test problems for the
Euler and relativistic MHD equations.

5.1. Shock tube problems

5.1.1. 3D Euler equations
In this section we consider classical one-dimensional shock tube problems, but computed in a fully three-dimensional

setting. We choose a computational domain X ¼ ½�0:5; 0:5� � ½�0:03; 0:03�2 with periodic boundary conditions in y and z
Table 3
Numerical convergence results obtained with high order one-step PNPM schemes using the new unstructured FORCE flux. Second to sixth order in space and
time.

NG L2 OL2 tCPU½s� L2 OL2 tCPU½s�

P1P1ðO2Þ P2P2ðO3Þ
16 6.10E�02 4.0 1.23E�02 11.9
24 2.47E�02 2.2 13.1 4.70E�03 2.4 43.9
32 1.11E�02 2.8 31.9 2.47E�03 2.2 92.5
64 2.16E�03 2.4 276.9 3.81E�04 2.7 740.8

P2P3ðO4Þ P3P3ðO4Þ
16 3.52E�03 21.0 4.46E�03 33.7
24 7.21E�04 3.9 70.5 8.83E�04 4.0 108.8
32 2.08E�04 4.3 165.5 2.85E�04 3.9 256.8
64 1.31E�05 4.0 1287.7 1.91E�05 3.9 2013.0

P3P5ðO6Þ P5P5ðO6Þ
16 2.11E�04 149.2 2.13E�04 259.8
24 2.07E�05 5.7 420.0 1.94E�05 5.9 734.5
32 3.66E�06 6.0 956.9 3.27E�06 6.2 1674.5
64 7.59E�08 5.6 6714.4 6.49E�08 5.7 11789.2
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Fig. 5. Unstructured tetrahedral mesh used for the 3D shock tube problems.

Table 4
Initial states left and right and simulation end times for the 3D shock tube problems.

Test case qL uL pL qR uR pR tend

1 0.445 0.698 3.528 0.5 0.0 0.571 0.14
2 1.0 0.75 1.0 0.125 0.0 0.1 0.20
3 1.0 �2.0 0.4 1.0 2.0 0.4 0.15
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direction and transmissive boundaries in x direction. The unstructured tetrahedral mesh used for our computations is de-
picted in Fig. 5 and contains 28,398 tetrahedral elements with a typical edge length of 0.01. This corresponds to an equiv-
alent one-dimensional resolution of 100 cells. We solve the full three-dimensional Euler equations with c ¼ 1:4 using a third
order ðP0P2ÞWENO finite volume scheme [12,13,11] with the new unstructured FORCE flux presented in this paper. The ini-
tial condition is given by
ðq;u;v ;w;pÞð~x;0Þ ¼
ðqL;uL; 0;0; pLÞ if x < 0;
ðqR;uR;0;0; pRÞ if x > 0:

�
ð56Þ
The values of the left and right initial states for the various test cases are given in Table 4.
The first test case is known as the Lax shock tube problem and was proposed by Lax in [29] and is often computed in the

research literature on high order WENO schemes. The second case corresponds to a modification of the standard Sod test
case, proposed in [42]; this test contains a sonic point in the rarefaction fan that exposes entropy-violating schemes as well
as some entropy-satisfying schemes via the well-known sonic glitch problem [34]. Test case 3 contains two very strong rar-
efaction waves that generate a low density region in the middle of the computational domain; this test is also known and the
123 problem.

The results depicted in Fig. 6 show the solution for density q and pressure p on 100 equidistant sample points taken on
the x-axis ðy ¼ z ¼ 0Þ at the final output times tend given in Table 4. For all test cases we note a very good agreement with the
exact reference solution.

5.1.2. 2D relativistic MHD equations
The relativistic MHD (RMHD) equations form a very complicated hyperbolic system. Particular complications arise from

the fact that the primitive variables, which enter the physical flux, can not be expressed any more in a closed analytical form
in terms of the conserved quantities. The details about this very interesting hyperbolic system can be found in
[3,45,15,24,36]. For the multi-dimensional version of the equations, we enforce the divergence-free condition of the mag-
netic field using the hyperbolic divergence-cleaning approach proposed by Dedner et al. [10] setting the divergence cleaning
speed equal to unity. We use the notation of [45], except for the momentum vector, which we call Mj in this paper. The vec-
tor of conserved variables Q is then given in terms of the primitive variables q;v j; p;Bj and W by
Q ¼

D

Mj

E

Bj

W

0BBBBBB@

1CCCCCCA ¼
cq

cwtotv j � b0bj

c2wtot � b0b0 � ptot

Bj

W

0BBBBBB@

1CCCCCCA: ð57Þ
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The flux tensor is defined in multiple space dimensions as
F ¼

cqv i;

c2wtotv iv j � bibj þ ptotdij;

c2wtotv i � b0bi

v iBj � Biv j þWdij

c2
hBi

0BBBBBB@

1CCCCCCA: ð58Þ
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The equation of state is
Table 5
Initial s

Case

1 L
1 R

2 L
2 R

Fig. 7.
[15].
e ¼ qþ p
C� 1

; ð59Þ
the Lorentz factor, denoted as c in this section, is defined by
c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�~v 2
p ; ð60Þ
and further quantities appearing in (57) and (58) are given by
b0 ¼ cvkBk; bi ¼ Bi

c
þ cv iðvkBkÞ; jbj2 ¼

~B2

c2 þ ðvkBkÞ2; ð61Þ
tates left (L) and right (R) for the RMHD shock tubes with final times te .

q p u v w By Bz Bx te

1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.5 0.4
0.125 0.1 0.0 0.0 0.0 �1.0 0.0 0.5

1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0 0.55
1.0 1.0 �0.45 �0.2 0.2 �0.7 0.5 2.0
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Results for the RMHD Riemann problem 1 at t ¼ 0:4 computed in 2D on 17,628 triangles. P0P2 WENO scheme (circles) and exact reference solution
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from which total enthalpy and total pressure are then finally defined as
Fig. 8.
[15].
wtot ¼ eþ pþ jbj2; ptot ¼ pþ 1
2
jbj2: ð62Þ
In this entire section, the speed of light is supposed to be set to unity. The computation of the primitive variables q;vk and p
from the vector up of conserved quantities is very complicated. It can not be done analytically but requires necessarily the
use of an iterative technique such as Newton’s method. A very elegant, robust and efficient way of transforming the conser-
vative variables to primitive variables using the analytic inversion of a third degree polynomial together with one non-linear
scalar equation to which subsequently Newton’s method is applied is given in [45].

As in [11] we solve the two-dimensional version of two standard shock tube test cases proposed originally in one space
dimension in [3]. The initial condition consists of two piece-wise constant states on the left and the right of the discontinuity
located at x ¼ 0:5. The initial states are summarized in Table 5. In test case 1 we use C ¼ 2 and in the second one we use
C ¼ 5=3, according to [3]. We solve these test cases in the computational domain X ¼ ½0; 1� � ½0; 0:05� on an unstructured
triangular mesh consisting of 17,628 elements in two space dimensions, corresponding to an equivalent one-dimensional
resolution of 400 points. We apply periodic boundary conditions in y-direction and transmissive boundaries in x-direction.
The shock capturing is again achieved via the unstructured WENO reconstruction procedure described in [12,13]. A cut
through the computational results at y ¼ 0:025 is shown in Figs. 7 and 8 and a 3D visualization of the solution together with
the mesh is depicted in Fig. 9.

5.2. Two-dimensional explosion problem

Here, we solve a strong two-dimensional explosion test problem in a circular computational domain X with radius R ¼ 1
using again a third order WENO finite volume scheme with the new unstructured FORCE flux as building block on an
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Results for the RMHD Riemann problem 2 at t ¼ 0:55 computed in 2D on 17,628 triangles. P0P2 WENO sche